kimia

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Kamis, 20 September 2012

koloid liofil

Berdasarkan perbedaan daya adsorpsi dari fase terdispersi terhadap medium pendispersinya yang berupa zat cair, koloid dapat dibedakan menjadi dua jenis. Sistem koloid di mana partikel terdispersinya mempunyai daya adsorpsi yang relatif besar disebut koloid liofil. Sedangkan sistem koloid dimana partikel terdispersinya mempunyai daya adsorpsi yang relatif kecil disebut koloid liofob.  Koloid liofil bersifat lebih stabil, sedangkan koloid liofob bersifat kurang stabil. Koloid liofil yang berfungsi sebagai koloid pelindung.
Koloid Liofil (suka cairan) :  koloid dimana terdapat gaya tarik menarik yang cukup besar antara fase terdispersi dan medium pendispersinya.
 Contohnya, dispersi kanji, sabun, deterjen, dan protein dalam air.
Koloid liofob (tidak suka cairan) :  koloid di mana terdapat gaya tarik menarik yang lemah  atau bahkan tidak ada gaya tarik menarik antara fase terdsipersi dan medium pendispersinya. Contohnya, dispersi emas, Fe (OH)3, dan belerang dalam air.
Contoh: sol kanji, agar-agar, lem, cat

sifat sistem koloid

Dialisis Koloid. Dialisis merupakan salah satu sifat dari sistem koloid. Dialisi adalah suatu proses permunian partikel koloid dari ion-ion penganggu kestabilan koloid dengan penyaringan mengunakan membran atau selaput semipermeabel. Selaput semipermeabel adalah sejenis alat saring yang dibuat khusus untuk keperluan dialisis koloid yang memiliki daya saring sangat tinggi. Selaput semipermeabel ini hanya melewatkan molekul air dan ion-ion saja, sedangkan partikel koloid tetap tinggal.

Cara kerja Dialisis Koloid \ Proses Dialisis Koloid

Prinsip dialisis atau pemisahan koloid dari ion-ion penganggu ini didasarkan pada perbedaan laju transport partikel. Proses Dialisis Koloid sangatlah sederhana. Koloid yang akan di dialisis dimasukan kedalam sebuah kantong yang terbuat dari selaput semipermeabel. Jika kantong berisi koloid tersebut kemudian dimasukan kedalam sebuah tempat berisi air yang mengalir, maka ion-ion penganggu akan menembus selaput semipermeabel bersama air dan yang tinggal selaput semipermeabel hanyalah koloid yang telah dimurnikan

koloid dalam kehidupan sehari-hari

a. Mengurangi polusi udara
Gas buangan pabrik yang mengandung asap dan partikel berbahaya dapat diatasi dengan menggunakan alat yang disebut pengendap cottrel. Prinsip kerja alat ini memanfaatkan sifat muatan dan penggumpalan koloid sehingga gas yang dikeluarkan ke udara telah bebas dari asap dan partikel berbahaya
Asap dari pabrik sebelum meninggalkan cerobong asap dialirkan melalui ujung-ujung logam yang tajam dan bermuatan pada tegangan tinggi (20.000 sampai 75.000 volt).  Ujung-ujung yang runcing akan mengionkan molekul-molekul dalam udara. Ion-ion tersebut akan diadsorpsi oleh partikel asap dan menjadi bermuatan. Selanjutnya, partikel  bermuatan itu akan tertarik dan diikat pada elektrode yang lainnya. Pengendap Cottrel ini banyak digunakan dalam industri untuk dua tujuan, yaitu mencegah polusi udara oleh buangan beracun dan memperoleh kembali debu yang berharga (misalnya debu logam).
b. Penggumpalan lateks
Getah karet dihasilkan dari pohon karet atau hevea. Getah karet merupakan sol, yaitu dispersi koloid fase padat dalam cairan. Karet alam merupakan zat padat yang molekulnya sangat besar (polimer). Partikel karet alam terdispersi sebagai partikel koloid dalam sol  getah karet. Untuk mendapatkan karetnya, getah karet harus dikoagulasikan agar karet
menggumpal dan terpisah dari medium pendispersinya. Untuk mengkoagulasikan getah  karet, biasanya digunakan asam formiat; HCOOH atau asam asetat; CH3COOH. Larutan asam pekat itu akan merusak lapisan pelindung yang mengelilingi partikel karet. Sedangkan ion-ion H+-nya akan menetralkan muatan partikel karet sehingga karet akan menggumpal.
Selanjutnya, gumpalan karet digiling dan dicuci lalu diproses lebih lanjut sebagai lembaran yang disebut sheet atau diolah menjadi karet remah (crumb rubber). Untuk keperluan lain,  misalnya pembuatan balon dan karet busa, getah karet tidak digumpalkan melainkan dibiarkan dalam wujud cair yang disebut lateks. Untuk menjaga kestabilan sol lateks, getah karet dicampur dengan larutan amonia; NH3. Larutan amonia yang bersifat basa melindungi partikel karet di dalam sol lateks dari zat-zat yang bersifat asam sehingga sol
tidak menggumpal.
c. Membantu pasien gagal ginjal
Proses dialisis untuk memisahkan partikel-partikel koloid dan zat terlarut merupakan dasar bagi pengembangan dialisator. Penerapan dalam kesehatan adalah sebagai mesin pencuci darah untuk penderita gagal ginjal. Ion-ion dan molekul kecil dapat melewati selaput semipermiabel dengan demikian pada akhir proses pada kantung hanya tersisa  koloid saja. Dengan melakukan cuci darah yang memanfaatkan prinsip dialisis koloid, senyawa beracun seperti urea dan keratin dalam darah penderita gagal ginjal dapat dikeluarkan. Darah yang telah bersih kemudian dimasukkan kembali ke tubuh pasien.
d. Penjernihan air
Untuk memperoleh air bersih perlu dilakukan upaya penjernihan air. Kadang-kadang air  dari mata air seperti sumur gali dan sumur bor tidak dapat dipakai sebagai air bersih jika tercemari. Air permukaan perlu dijernihkan sebelum dipakai. Upaya penjernihan air dapat dilakukan baik skala kecil (rumah tangga) maupun skala besar seperti yang dilakukan oleh Perusahaan Daerah Air Minum (PDAM). Pada dasarnya penjernihan air itu dilakukan  secara bertahap. Mula-mula mengendapkan atau menyaring bahan-bahan yang tidak larut
dengan saringan pasir. Kemudian air yang telah disaring ditambah zat kimia, misalnya tawas atau aluminium sulfat dan kapur agar kotoran menggumpal dan selanjutnya mengendap, dan kaporit atau kapur klor untuk membasmi bibit-bibit penyakit. Air yang  dihasilkan dari penjernihan itu, apabila akan dipakai sebagai air minum, harus dimasak  terlebih dahulu sampai mendidih beberapa saat lamanya.
Untuk memperjelas tentang penjernihan air perhatikan gambar 9.13 berikut!
Proses pengolahan air tergantung pada mutu baku air (air belum diolah), namun pada  dasarnya melalui 4 tahap pengolahan. Tahap pertama adalah pengendapan, yaitu air baku dialirkan perlahan-lahan sampai benda-benda yang tak larut mengendap. Pengendapan ini  memerlukan tempat yang luas dan waktu yang lama. Benda-benda yang berupa koloid  tidak dapat diendapkan dengan cara itu.
Pada  tahap kedua, setelah suspensi kasar terendapkan, air yang mengandung koloid diberi zat yang dinamakan koagulan. Koagulan yang banyak digunakan adalah aluminium sulfat, besi(II)sulfat,     besi(III)klorida, dan klorinasi koperos (FeCl2Fe2(SO4)3). Pemberian koagulan selain untuk mengendapkan partikel-partikel koloid, juga untuk menjadikan  pH air sekitar 7 (netral). Jika pH air berkisar antara 5,5–6,8, maka yang digunakan adalah aluminium sulfat, sedangkan untuk senyawa besi sulfat dapat digunakan pada pH air 3,5–5,5.
Pada  tahap ketiga, air yang telah diberi koagulan mengalami proses pengendapan, benda-benda koloid yang telah menggumpal dibiarkan mengendap. Setelah mengalami pengendapan, air tersebut disaring melalui penyaring pasir sehingga sisa endapan yang masih terbawa di dalam air akan tertahan pada saringan pasir tersebut.
Pada  tahap terakhir, air jernih yang dihasilkan diberi sedikit air kapur untuk menaikkan pHnya, dan untuk membunuh bakteri diberikan kalsium hipoklorit (kaporit) atau klorin (Cl2).
e.  Sebagai deodoran
Deodoran mengandung aluminium klorida yang dapat mengkoagulasi atau mengendapkan protein dalam keringat.endapan protein ini dapat menghalangi kerja kelenjer keringat sehingga keringat dan potein yang dihasilkan berkurang.
f. Sebagai bahan makanan dan obat
Ada zat-zat yang tidak larut dalam air sehingga harus dikemas dalam bentuk koloid sehingga mudah diminum. Contohnya obat dalam bentuk kapsul.
g. Sebagai bahan kosmetik
Ada berbagai bahan kosmetik kosmetik berupa padatan, tetapi lebih baik digunakan dalam bentuk cairan. Untuk itu biasanya dibuat berupa koloid dengan tertentu.
h. Sebagai bahan pencuci
Prinsip koloid juga digunakan dalam proses pencucian dengan sabun dan detergen. Dalam pencucian dengan sabun atau detergen, sabun/ detergen berfungsi sebagai emulgator. Sabun/detergen akan mengemulsikan minyak dalam air  sehingga kotoran-kotoran berupa lemak atau minyak dapat dihilangkan dengan cara pembilasan dengan air.
Back to Bahan Ajar: Click Here
  1. Elisabeth Juliaz Solicha
    lengkap bangeeddd……bagusss!!!
  2. sangat membantu bagi saya yang sedang mengerjakan yugas,, makasih kawan
  3. makasih y buat datanya..

Tinggalkan Balasan

Ikuti

Get every new post delivered to your Inbox.

jenis koloid

Penggolongan sistem koloid didasarkan pada jenis fase pendispersi dan fase terdispersi
  • 1. Aerosol
    Sistem koloid dari partikel padat atau cair yang terdispersi dalam gas disebut aerosol. Jika zat yang terdispersi berupa zat padat disebut aerosol padat. Contoh aerosol padat : debu buangan knalpot. Sedangkan zat yang terdispersi berupa zat cair disebut aerosol cair. Contoh aerosol cair : hairspray dan obat semprot.
    Untuk menghasilkan aerosol diperlukan suatu bahan pendorong (propelan aerosol). Contoh propelan aerosol yang banyak digunakan yaitu CFC dan CO2.
  • 2. Sol
    Sistem koloid dari partikel padat yang terdispersi dalam zat cair disebut sol. Contoh sol : putih telur, air lumpur, tinta, cat dan lain-lain. Sistem koloid dari partikel padat yang terdispersi dalam zat padat disebut sol padat. Contoh sol padat : perunggu, kuningan, permata (gem).

komponen penyusun koloid

Koloid adalah suatu campuran zat heterogen (dua fase) antara dua zat atau lebih di mana partikel-partikel zat yang berukuran koloid (fase terdispersi/yang dipecah) tersebar secara merata di dalam zat lain (medium pendispersi/ pemecah). Ukuran partikel koloid berkisar antara 1-100 nm.  Jadi, koloid tergolong campuran heterogen dan merupakan sistem dua fasa.
 Ukuran yang dimaksud dapat berupa diameter, panjang, lebar, maupun tebal dari suatu partikel. Contoh lain dari sistem koloid adalah adalah tinta, yang terdiri dari serbuk-serbuk warna (padat) dengan cairan (air). Selain tinta contoh koloid lainnya yaitu susu, larutan gula, santan, dll.  Keadaan koloid atau sistem koloid adalah suatu campuran berfasa dua yaitu fasa terdispersi dan fasa pendispersi  dengan ukuran partikel terdispersi berkisar antara 10-7 sampai dengan 10-4 cm. Partikel dapat terdiri atas atom, molekul kecil atau molekul yang sangat besar. Koloid emas terdiri atas partikel-partikel dengan bebagai ukuran, yang masing-masing mengandung jutaan atom emas atau lebih. Koloid belerang terdiri atas partikel-partikel yang mengandung sekitar seribu molekul. Suatu contoh molekul yang sangat besar (disebut juga molekul makro) ialah haemoglobin.

sistem koloid

Sistem koloid (selanjutnya disingkat "koloid" saja) merupakan suatu bentuk campuran (sistem dispersi) dua atau lebih zat yang bersifat homogen namun memiliki ukuran partikel terdispersi yang cukup besar (1 - 100 nm), sehingga terkena efek Tyndall. Bersifat homogen berarti partikel terdispersi tidak terpengaruh oleh gaya gravitasi atau gaya lain yang dikenakan kepadanya; sehingga tidak terjadi pengendapan, misalnya. Sifat homogen ini juga dimiliki oleh larutan, namun tidak dimiliki oleh campuran biasa (suspensi).
Koloid mudah dijumpai di mana-mana: susu, agar-agar, tinta, sampo, serta awan merupakan contoh-contoh koloid yang dapat dijumpai sehari-hari. Sitoplasma dalam sel juga merupakan sistem koloid. Kimia koloid menjadi kajian tersendiri dalam kimia industri karena kepentingannya.

Macam-macam koloid

Koloid memiliki bentuk bermacam-macam, tergantung dari fase zat pendispersi dan zat terdispersinya. Beberapa jenis koloid:
  • Aerosol yang memiliki zat pendispersi berupa gas. Aerosol yang memiliki zat terdispersi cair disebut aerosol cair (contoh: kabut dan awan) sedangkan yang memiliki zat terdispersi padat disebut aerosol padat (contoh: asap dan debu dalam udara).
  • Sol Sistem koloid dari partikel padat yang terdispersi dalam zat cair. (Contoh: Air sungai, sol sabun, sol detergen dan tinta).
  • Emulsi Sistem koloid dari zat cair yang terdispersi dalam zat cair lain, namun kedua zat cair itu tidak saling melarutkan. (Contoh: santan, susu, mayonaise, dan minyak ikan).
  • Buih Sistem Koloid dari gas yang terdispersi dalam zat cair. (Contoh: pada pengolahan bijih logam, alat pemadam kebakaran, kosmetik dan lainnya).
  • Gel sistem koloid kaku atau setengah padat dan setengah cair. (Contoh: agar-agar, Lem).

Sifat-sifat Koloid

  • Efek Tyndall
Efek Tyndall ialah gejala penghamburan berkas sinar (cahaya) oleh partikel-partikel koloid. Hal ini disebabkan karena ukuran molekul koloid yang cukup besar. Efek tyndall ini ditemukan oleh John Tyndall (1820-1893), seorang ahli fisika Inggris. Oleh karena itu sifat itu disebut efek tyndall.
Efek tyndall adalah efek yang terjadi jika suatu larutan terkena sinar. Pada saat larutan sejati disinari dengan cahaya, maka larutan tersebut tidak akan menghamburkan cahaya, sedangkan pada sistem koloid, cahaya akan dihamburkan. hal itu terjadi karena partikel-partikel koloid mempunyai partikel-partikel yang relatif besar untuk dapat menghamburkan sinar tersebut. Sebaliknya, pada larutan sejati, partikel-partikelnya relatif kecil sehingga hamburan yang terjadi hanya sedikit dan sangat sulit diamati.
  • Gerak Brown
Gerak Brown ialah gerakan partikel-partikel koloid yang senantiasa bergerak lurus tapi tidak menentu (gerak acak/tidak beraturan). Jika kita amati koloid dibawah mikroskop ultra, maka kita akan melihat bahwa partikel-partikel tersebut akan bergerak membentuk zigzag. Pergerakan zigzag ini dinamakan gerak Brown. Partikel-partikel suatu zat senantiasa bergerak. Gerakan tersebut dapat bersifat acak seperti pada zat cair dan gas( dinamakan gerak brown), sedangkan pada zat padat hanya beroszillasi di tempat ( tidak termasuk gerak brown ). Untuk koloid dengan medium pendispersi zat cair atau gas, pergerakan partikel-partikel akan menghasilkan tumbukan dengan partikel-partikel koloid itu sendiri. Tumbukan tersebut berlangsung dari segala arah. Oleh karena ukuran partikel cukup kecil, maka tumbukan yang terjadi cenderung tidak seimbang. Sehingga terdapat suatu resultan tumbukan yang menyebabkan perubahan arah gerak partikel sehingga terjadi gerak zigzag atau gerak Brown.
Semakin kecil ukuran partikel koloid, semakin cepat gerak Brown yang terjadi. Demikian pula, semakin besar ukuran partikel koloid, semakin lambat gerak Brown yang terjadi. Hal ini menjelaskan mengapa gerak Brown sulit diamati dalam larutan dan tidak ditemukan dalam campuran heterogen zat cair dengan zat padat (suspensi). Gerak Brown juga dipengaruhi oleh suhu. Semakin tinggi suhu sistem koloid, maka semakin besar energi kinetik yang dimiliki partikel-partikel medium pendispersinya. Akibatnya, gerak Brown dari partikel-partikel fase terdispersinya semakin cepat. Demikian pula sebaliknya, semakin rendah suhu sistem koloid, maka gerak Brown semakin lambat.
  • Adsorpsi
Adsorpsi ialah peristiwa penyerapan partikel atau ion atau senyawa lain pada permukaan partikel koloid yang disebabkan oleh luasnya permukaan partikel. (Catatan : Adsorpsi harus dibedakan dengan absorpsi yang artinya penyerapan yang terjadi di dalam suatu partikel). Contoh : (i) Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+. (ii) Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2.
  • Muatan koloid
Dikenal dua macam koloid, yaitu koloid bermuatan positif dan koloid bermuatan negatif

menghitung ph larutan penyangga

Kali ini saya akan bagi2 ilmu yang INsyaAllah dapat membantu tmen2 semuanya!! AMin!!
tau tentang larutan penyangga bukand??? yaps....Larutan penyangga atau disebut juga sebagai Buffer adalah larutan yang dapat mempertahankan pH suatu larutan. Buffer dibuat dari asam lemah dengan garam dari basa konjugasinya atau basa lemah dengan garam dari asam konjugasinya. 
seperti Rx berikut...

fungsi larutan penyangga

Larutan penyangga sangat penting dalam kehidupan; misalnya dalam analisis kimia, biokimia, bakteriologi, zat warna, fotografi, dan industri kulit. Dalam bidang biokimia, kultur jaringan dan bakteri mengalami proses yang sangat sensitif terhadap perubahan pH. Darah dalam tubuh manusia mempunyai kisaran pH 7,35 sampai 7,45, dan apabila pH darah manusia di atas 7,8 akan menyebabkan organ tubuh manusia dapat rusak, sehingga harus dijaga kisaran pHnya dengan larutan penyangga.
  1. Darah Sebagai Larutan Penyangga
Ada beberapa faktor yang terlibat dalam pengendalian pH darah, diantaranya penyangga karbonat, penyangga hemoglobin dan penyangga fosfat.
a. Penyangga Karbonat
Penyangga karbonat berasal dari campuran asam karbonat (H 2 CO 3 ) dengan basa konjugasi bikarbonat (HCO 3 ).
H 2 CO 3 (aq) --> HCO 3(aq) + H + (aq)
Penyangga karbonat sangat berperan penting dalam mengontrol pH darah. Pelari maraton dapat mengalami kondisi asidosis, yaitu penurunan pH darah yang disebabkan oleh metabolisme yang tinggi sehingga meningkatkan produksi ion bikarbonat. Kondisi asidosis ini dapat mengakibatkan penyakit jantung, ginjal, diabetes miletus (penyakit gula) dan diare. Orang yang mendaki gunung tanpa oksigen tambahan dapat menderita alkalosis, yaitu peningkatan pH darah. Kadar oksigen yang sedikit di gunung dapat membuat para pendaki bernafas lebih cepat, sehingga gas karbondioksida yang dilepas terlalu banyak, padahal CO 2 dapat larut dalam air menghasilkan H 2 CO 3 . Hal ini mengakibatkan pH darah akan naik. Kondisi alkalosis dapat mengakibatkan hiperventilasi (bernafas terlalu berlebihan, kadang-kadang karena cemas dan histeris).
b. Penyangga Hemoglobin
Pada darah, terdapat hemoglobin yang dapat mengikat oksigen untuk selanjutnya dibawa ke seluruh sel tubuh. Reaksi kesetimbangan dari larutan penyangga oksi hemoglobin adalah:
HHb + O 2 (g) « HbO 2 - + H +
Asam hemoglobin ion aksi hemoglobin
Keberadaan oksigen pada reaksi di atas dapat memengaruhi konsentrasi ion H +, sehingga pH darah juga dipengaruhi olehnya. Pada reaksi di atas O 2 bersifat basa. Hemoglobin yang telah melepaskan O 2 dapat mengikat H + dan membentuk asam hemoglobin. Sehingga ion H + yang dilepaskan pada peruraian H 2 CO 3 merupakan asam yang diproduksi oleh CO 2 yang terlarut dalam air saat metabolisme.
c. Penyangga Fosfat
Pada cairan intra sel, kehadiran penyangga fosfat sangat penting dalam mengatur pH darah. Penyangga ini berasal dari campuran dihidrogen fosfat (H 2 PO 4 - ) dengan monohidrogen fosfat (HPO 3 2- ).
H 2 PO 4 - (aq) + H + (aq) --> H 2 PO 4(aq)
H 2 PO 4 - (aq) + OH - (aq) --> HPO 4 2- (aq) ) + H 2 O (aq)
Penyangga fosfat dapat mempertahankan pH darah 7,4. Penyangga di luar sel hanya sedikit jumlahnya, tetapi sangat penting untuk larutan penyangga urin.
  1. Air Ludah sebagai Larutan Penyangga
Gigi dapat larut jika dimasukkan pada larutan asam yang kuat. Email gigi yang rusak dapat menyebabkan kuman masuk ke dalam gigi. Air ludah dapat mempertahankan pH pada mulut sekitar 6,8. Air liur mengandung larutan penyangga fosfat yang dapat menetralisir asam yang terbentuk dari fermentasi sisa-sisa makanan.

komponen larutan penyangga

Larutan penyangga, larutan dapar, atau buffer adalah larutan yang digunakan untuk mempertahankan nilai pH tertentu agar tidak banyak berubah selama reaksi kimia berlangsung. Sifat yang khas dari larutan penyangga ini adalah pH-nya hanya berubah sedikit dengan pemberian sedikit asam kuat atau basa kuat.
Larutan penyangga tersusun dari asam lemah dengan basa konjugatnya atau oleh basa lemah dengan asam konjugatnya. Reaksi di antara kedua komponen penyusun ini disebut sebagai reaksi asam-basa konjugasi.

Daftar isi

Komponen Larutan Penyangga

Secara umum, larutan penyangga digambarkan sebagai campuran yang terdiri dari:
  • Asam lemah (HA) dan basa konjugasinya (ion A-), campuran ini menghasilkan larutan bersifat asam.
  • Basa lemah (B) dan asam konjugasinya (BH+), campuran ini menghasilkan larutan bersifat basa.

Komponen larutan penyangga terbagi menjadi:
  • Larutan penyangga yang bersifat asam
Larutan ini mempertahankan pH pada daerah asam (pH < 7). Untuk mendapatkan larutan ini dapat dibuat dari asam lemah dan garamnya yang merupakan basa konjugasi dari asamnya. Adapun cara lainnya yaitu mencampurkan suatu asam lemah dengan suatu basa kuat dimana asam lemahnya dicampurkan dalam jumlah berlebih. Campuran akan menghasilkan garam yang mengandung basa konjugasi dari asam lemah yang bersangkutan. Pada umumnya basa kuat yang digunakan seperti natriumNa), kalium, barium, kalsium, dan lain-lain.
  • Larutan penyangga yang bersifat basa
Larutan ini mempertahankan pH pada daerah basa (pH > 7). Untuk mendapatkan larutan ini dapat dibuat dari basa lemah dan garam, yang garamnya berasal dari asam kuat. Adapun cara lainnya yaitu dengan mencampurkan suatu basa lemah dengan suatu asam kuat dimana basa lemahnya dicampurkan berlebih.

Cara kerja larutan penyangga

Larutan penyangga mengandung komponen asam dan basa dengan asam dan basa konjugasinya, sehingga dapat mengikatbaik ion H+ maupun ion OH-. Sehingga penambahan sedikit asam kuat atau basa kuat tidak mengubah pH-nya secara signifikan. Berikut ini cara kerja larutan penyangga:

Larutan penyangga asam

Adapun cara kerjanya dapat dilihat pada larutan penyangga yang mengandung CH3COOH dan CH3COO- yang mengalami kesetimbangan. Dengan proses sebagai berikut:
  • Pada penambahan asam
Penambahan asam (H+) akan menggeser kesetimbangan ke kiri. Dimana ion H+ yang ditambahkan akan bereaksi dengan ion CH3COO- membentuk molekul CH3COOH.
CH3COO-(aq) + H+(aq) → CH3COOH(aq)
  • Pada penambahan basa
Jika yang ditambahkan adalah suatu basa, maka ion OH- dari basa itu akan bereaksi dengan ion H+ membentuk air. Hal ini akan menyebabkan kesetimbangan bergeser ke kanan sehingga konsentrasi ion H+ dapat dipertahankan. Jadi, penambahan basa menyebabkan berkurangnya komponen asam (CH3COOH), bukan ion H+. Basa yang ditambahkan tersebut bereaksi dengan asam CH3COOH membentuk ion CH3COO- dan air.
CH3COOH(aq) + OH-(aq) → CH3COO-(aq) + H2O(l)

Larutan penyangga basa

Adapun cara kerjanya dapat dilihat pada larutan penyangga yang mengandung NH3 dan NH4+ yang mengalami kesetimbangan. Dengan proses sebagai berikut:

reaksi penetralan

Dari televisi, Anda sering melihat iklan yang menggambarkan bagaimana efektifnya antasid (obat maag) dalam menetralkan asam lambung. Apa yang dikandung obat-obatan antasid tersebut? Ternyata obat-obatan tersebut mengandung basa, karena hanya basa yang dapat menetralkan pengaruh asam. Umumnya zat-zat dengan sifat yang berlawanan, seperti asam dan basa cenderung bereaksi satu sama lain. Reaksi asam dan basa merupakan pusat kimiawi sistem kehidupan, lingkungan, dan proses-proses industri yang penting. Bila larutan asam  direaksikan dengan larutan basa, maka sebagian dari ion H3O+ asam akan bereaksi dengan sebagian ion OH- basa membentuk air.
23

Rabu, 19 September 2012

kelarutan


elarutan atau solubilitas adalah kemampuan suatu zat kimia tertentu, zat terlarut (solute), untuk larut dalam suatu pelarut (solvent). Kelarutan dinyatakan dalam jumlah maksimum zat terlarut yang larut dalam suatu pelarut pada kesetimbangan. Larutan hasil disebut larutan jenuh. Zat-zat tertentu dapat larut dengan perbandingan apapun terhadap suatu pelarut. Contohnya adalah etanol di dalam air. Sifat ini lebih dalam bahasa Inggris lebih tepatnya disebut miscible.
Pelarut umumnya merupakan suatu cairan yang dapat berupa zat murni ataupun campuran. Zat yang terlarut, dapat berupa gas, cairan lain, atau padat. Kelarutan bervariasi dari selalu larut seperti etanol dalam air, hingga sulit terlarut, seperti perak klorida dalam air. Istilah "tak larut" (insoluble) sering diterapkan pada senyawa yang sulit larut, walaupun sebenarnya hanya ada sangat sedikit kasus yang benar-benar tidak ada bahan yang terlarut. Dalam beberapa kondisi, titik kesetimbangan kelarutan dapat dilampaui untuk menghasilkan suatu larutan yang disebut lewat jenuh (supersaturated) yang metastabil.
Istilah Kelarutan

hidrolisis garam


        • Hidrolisis berasal dari kata hidro yaitu air dan lisis berarti      penguraian, berarti hidrolisis garam adalah penguraian garam      oleh air yang menghasilkan asam dan basanya kembali.
      • * Ada dua macam hidrolisis, yaitu:
      •      Hidrolisis parsial/sebagian (jika garamnya berasal dari asam      lemah dan basa kuat atau sebaliknya & pada hidrolisis sebagian      hanya salah satu ion saja yang mengalami reaksi hidrolisis, yang      lainnya tidak)
  •      Hidrolisis total (jika garamnya berasal dari asam lemah dan basa      lemah).
  • * Beberapa jenis garam berdasarkan komponen asam basa pembentuknya

larutan asam dan basa

Asam dan Basa merupakan dua golongan zat kimia yang sangat penting dalam kehidupan sehari-hari. Berkaitan dengan sifat asam Basa, larutan dikelompokkan dalam tiga golongan, yaitu bersifat asam, bersifat basa, dan bersifat netral. Asam dan Basa memiliki sifat-sifat yang berbeda, sehingga dapat kita bisa menentukan sifat suatu larutan. Untuk menentukan suatu larutan bersifat asam atau basa, ada beberapa cara. Yang pertama menggunakan indikator warna, yang akan menunjukkan sifat suatu larutan dengan perubahan warna yang terjadi. Misalnya Lakmus, akan berwarna merah dalam larutan yang bersifat asam dan akan berwarna biru dalam larutan yang bersifat basa. Sifat asam basa suatu larutan juga dapat ditentukan dengan mengukur pH-nya. pHmerupakan suatu parameter yang digunakan untuk menyatakan tingkat keasaman larutan. Larutan asam memiliki pH kurang dari 7, larutan basa memiliki pH lebih dari 7, sedangkan larutan netral memiliki pH=7. pH suatu larutan dapat ditentukan dengan indikator pH atau dengan pH meter.

kesetimbangan dalam industri

Banyak proses kimia dalam indusrti merupakan reaksi kesetimbamgan . Untuk memoeroleh hasil berkualitas tinggi dalam jumlah yang banyak dengan menggunakan proses yang efesien dan efektif . Pengetahuan tentang kesetimbangan kimia sangat dibutuhkan oleh beberapa industri kimia, misalnya industri pembuatan ammonia dan asam sulfat.

1.Peoses ammonia
Dari semua macam senyawa nitrogen, amonia adalah senyawa nitogen yang paling penting. Amonia merupakan salah satu senyawa dasar nitogen yang dapat direaksikan dengan berbagai senyawa yang berbeda selain proses pembuatan amonia yang sudah terbukti ekonomis dan efisiensinya yang sampai sekarang terus ditingkatkan. Sebagian besar amonia diperoleh dengan cara pembuatan sintetis di pabrik dan sebagian kecilnya diperoleh dari hasil samping suatu reaksi

Pembuatan ammonia terdieri dari enam tahap:
1.Pembuatan gas-gas pereaksi
2.Pemurnian
3.Kompresi
4.Reaksi katalik
5.Resikulasi

2.Proses asam sulfat
Asam sulfat secara besar-besaran dapat di hasilkan dengan proses kontak ,bahan yang dipakai adalah belerang murni yang di baker di udara dengan reaksi:
S(s)+O2(g) SO2(g)
SO2 yang terbentuk dioksidasi di udara dengan memakai katalisator . Reaksinya merupakan reaksi kesetimbangan.

2SO2(g)+O2(g) 2SO3(g)
Untuk mendapatkan SO3dalam jumlah besar ,dengan temperatur rendah dan tekanan tinggi,agar kesetimbamgan bergeser kearah SO3,reaksi baru dapat berlangsung pada temperature 4000C. Dengan katalis vanadium pentaoksida(V2O5),reaksi berlangsung dengan baik,yaitu 98% sempurna dan tidak memerlukan tekanan tinggi .
Belerang trioksida (SO3)dicampur dengan asam sulfat padat (H2SO4),sehingga diadsobsi oleh asam tersebutmembentuk asam pirosulfat (H2S2O7) yang disebut juga dengan oleum,dengan reaksi:

SO3(g)+H2SO4 H2S2O7(l)

Asam pirosulfat itu diubah menjadi asam sulfat dangan menambah kan air,dengan reaksi:
H2S2O7 (l)+H2O(l) 2H2SO4(l)
Asam yang dihasilkan dari proses itu adalah 100%.
Asasm sulfat merupakan bahan penting karena karena kegunaannya yang luas sepertin untuk industripupuk ,cat,rayon ,bahan peledak dan untuk berbagai bahan lainserta untuk pemurnian minyak bumi disanping digunakan untuk air aki.

tetapan kesetimbangan


Dalam system tertutup, dimana tekanan dan suhu dijaga, maka energi bebas Gibbs adalah nol.
artikel 23
Dalam keadaan kesetimbangan reaksi berlangsung dalam dua arah yaitu ke arah pembentukan dan ke arah penguraian. Kita ambil contoh reaksi berikut
N2 + 3 H2 ⇄ 2 NH3
Dari persamaan kesetimbangan di atas nampak bahwa gas nitrogen bereaksi dengan gas hidrogen membentuk gas amoniak, ditandai dengan arah reaksi ke kanan. Sedangkan reaksi ke arah kiri merupakan reaksi penguraian dari gas amoniak menjadi gas nitrogen dan gas Hidrogen.
Pada saat kesetimbangan, ke tiga zat ada di dalam campuran, dimana komposisi zat tidak sama atau tidak sesuai dengan persamaan reaksinya.
Komposisi zat yang ada dalam kesetimbangan dicerminkan oleh harga tetapan kesetimbangan, perhatikan Gambar 9.7.
gambar 9.7
Gambar 9.7 Kesetimbangan gas dari pembentukan senyawa NH3 dari gas N2 dan H2 dalam system tertutup
Reaksi umum dari kesetimbangan;
a A + b B ⇄ c C + d D
dan berlaku energi bebas Gibbs ΔG = 0, dimana
artikel 24
Kp = Tetapan kesetimbangan (dalam fasa gas)
pC = tekanan gas C, dengan koofisien reaksi c
pD = tekanan gas D dengan koofisien reaksi d
pA = tekanan gas A dengan koofisien reaksi a
pB = tekanan gas B dengan koofisien reaksi b.
Selanjutnya, Guldenberg dan Waage, mengembangkan kesetimbangan dalam fasa larutan, dan mereka menemukan bahwa dalam keadaan kesetimbangan pada suhu tetap, maka hasil kali konsentrasi zat-zat hasil reaksi dibagi dengan hasil kali konsentrasi pereaksi yang sisa dimana masing-masing konsentrasi itu dipangkatkan dengan koefisien reaksinya adalah tetap. Pernyataan ini dikenal dengan Hukum Guldberg dan Wange, dan disederhanakan ke dalam persamaan

pergeseran kesetimbangan


Azas Le Chatelier menyatakan: Bila pada sistem kesetimbangan diadakan aksi, maka sistem akan mengadakan reaksi sedemikian rupa sehingga pengaruh aksi itu menjadi sekecil-kecilnya.
Perubahan dari keadaan kesetimbangan semula ke keadaan kesetimbangan yang baru akibat adanya aksi atau pengaruh dari luar itu dikenal dengan pergeseran kesetimbangan.
Bagi reaksi:
A  +  B   ↔   C  +  D

KEMUNGKINAN TERJADINYA PERGESERAN
1. Dari kiri ke kanan, berarti A bereaksi dengan B memhentuk C dan D, sehingga jumlah mol A dan Bherkurang, sedangkan C dan D bertambah.
2.Dari kanan ke kiri, berarti C dan D bereaksi membentuk A dan B. sehingga jumlah mol C dan Dherkurang, sedangkan A dan B bertambah.
FAKTOR-FAKTOR YANG DAPAT MENGGESER LETAK KESETIMBANGAN ADALAH :
a. Perubahan konsentrasi salah satu zat
b. Perubahan volume atau tekanan
c. Perubahan suhu
A. PERUBAHAN KONSENTRASI SALAH SATU ZAT

kesetimbangan kimia



Reaksi kesetimbangan adalah reaksi dimana zat-zat hasil reaksi ( produk ) dapat bereaksi kembali membentuk zat-zat semula ( reaktan ). Jadi reaksi berlangsung dua arah ( reversibel ) :


Kapankah suatu reaksi bolak-balik mencapai keadaan setimbang ?

Pada saat laju reaksi ke kanan = laju reaksi ke kiri

Bagaimana kita dapat mengetahui bahwa suatu reaksi bolak-balik telah mencapai kesetimbangan ?
Saat tercapai kesetimbangan jumlah zat-zatnya baik reaktan maupun produk tidak lagi berubah. Jumlah zat sebanding dengan mol dan konsentrasi sehingga saat setimbang mol dan konsentrasi zat-zatnya tetap.

Jelaskan, mengapa kesetimbangan kimia disebut kesetimbangan dinamis !

Walaupun reaksi kimia sudah mencapai keadaan setimbang akan tetapi reaksi tetap berlangsung pada tingkat molekul/mikroskopis. karena kecepatan reaksi maju/ke kanan = reaksi balik/ke kiri maka seakan-akan reaksinya sudah berhenti.


Ciri khas reaksi kesetimbangan :

"Zat-zat ruas kiri ( reaktannya ) tidak pernah habis"

Pada saat terjadi kesetimbangan, maka harga tetapan kesetimbangan ( Kc ) dapat ditentukan. Nilainya ditentukan dengan menggunakan perbandingan konsentrasi zat-zatnya saat tercapai kesetimbangan.


dari bentuk persamaan di atas dapat disimpulkan :
Jika nikai K > 1 maka hasil/produk yang dihasilkan banyak

Jika nikai K < 1 maka hasil/produk yang dihasilkan sedikit

Hal PENTING yang perlu kalian ketahui !

persamaan laju reaksi


Laju reaksi atau kecepatan reaksi menyatakan banyaknya reaksi kimia yang berlangsung per satuan waktu. Laju reaksi menyatakan molaritas zat terlarut dalam reaksi yang dihasilkan tiap detik reaksi. Perkaratan besi merupakan contoh reaksi kimia yang berlangsung lambat, sedangkan peledakan mesiu atau kembang api adalah contoh reaksi yang cepat.
Laju reaksi dipelajari oleh cabang ilmu kimia yang disebut kinetika kimia.

Definisi formal

Untuk reaksi kimia
aA + bB \rarr pP + qQ
dengan a, b, p, dan q adalah koefisien reaksi, dan A, B, P, dan Q adalah zat-zat yang terlibat dalam reaksi, laju reaksi dalam suatu sistem tertutup adalah
v = - \frac{1}{a} \frac{d[A]}{dt} = - \frac{1}{b} \frac{d[B]}{dt} = \frac{1}{p} \frac{d[P]}{dt} = \frac{1}{q} \frac{d[Q]}{dt}
dimana [A], [B], [P], dan [Q] menyatakan konsentrasi zat-zat tersebut.

Faktor yang mempengaruhi laju reaksi

Laju reaksi dipengaruhi oleh beberapa faktor, antara lain:

Luas permukaan sentuh

teori tumbukan


1. Hubungan Faktor-Faktor yang Mempercepat Laju Reaksi dengan Teori Tumbukan
Tumbukan antara pereaksi ada yang menghasilkan reaksi dan tidak, sebagai contoh amati gambar reaksi antara hidrogen dan iodium berikut:
Gambar : Tumbukan hidrogen dan iodium yang tidak menghasilkan reaksi
Gambar 4.15 Tumbukan hidrogen dan iodium yang menghasilkan reaksi
Untuk mengetahui teori tumbukan menjelaskan faktor-faktor yang mempengaruhi laju reaksi, Perhatikan Tabel berikut:

Tabel : Hubungan faktor-faktor yang mempercepat laju reaksi dengan teori tumbukan
Berdasarkan teori tumbukan, suatu tumbukan akan menghasilkan suatu reaksi jika ada energi yang cukup. Selain energi, jumlah tumbukan juga berpengaruh. Laju reaksi akan lebih cepat, jika tumbukan antara partikel yang berhasil lebih banyak terjadi.
2. Energi Aktivasi
Pada kenyataannya molekul-molekul dapat bereaksi jika terdapat tumbukan dan molekul-molekul mempunyai energi minimum untuk bereaksi. Energi minimum yang diperlukan untuk bereaksi pada saat molekul bertumbukan disebut energi aktivasi. Energi aktivasi digunakan untuk memutuskan ikatan-ikatan pada pereaksi sehingga dapat membentuk ikatan baru pada hasil reaksi. Misalnya energi aktivasi pada reaksi gas hidrogen dan iodium dengan persamaan reaksi:
digambarkan pada grafik sebagai berikut

konsep laju reaksi


1. Pengertian Laju Reaksi
Laju menyatakan seberapa cepat atau seberapa lambat suatu proses berlangsung. Laju juga menyatakan besarnya perubahan yang terjadi dalam satu satua waktu. Satuan waktu dapat berupa detik, menit, jam, hari atau tahun.
Reaksi kimia adalah proses perubahan zat pereaksi menjadi produk. Seiring dengan bertambahnya waktu reaksi, maka jumlah zat peraksi semakin sedikit, sedangkan produk semakin banyak. Laju reaksi dinyatakan sebagai laju berkurangnya pereaksi atau laju terbentuknya produk.

2. Ungkapan Laju Reaksi untuk Sistem Homogen

Untuk sistem homogen, laju reaksi umum dinyatakan sebagai laju penguragan konsentrasi molar pereaksi atau laju pertambahan konsentrasi molar produk untuk satu satuan waktu, sebagai berikut:































Jika diketahui satuan dari konsentrasi molar adalah mol/L. Maka satuan dari laju reaksi adalah mol/L.det atau M/det.
3. Laju Rerata dan Laju Sesaat
a. Laju rerata
Laju rerata adalah rerata laju untuk selang waktu tertentu. Perbedaan antara laju rerata dengan laju sesaat dapat diandaikan dengan laju kendaraan. Misalnya suatu kendaraan menempuh jarak 300 km dalam 5 jam. Laju rerata kendaraan itu adalah 300 km/5 jam = 60 km/jam. Tentu saja laju kendaraan tidak selalu 60 km/jam. Laju sesaat ditunjukkan oleh speedometer kendaraan.

b. Laju Sesaat
Laju sesaat adalah laju pada saat tertentu. Sebagai telah kita lihat sebelumnya, laju reaksi berubah dari waktu ke waktu. Pada umumnya, laju reaksi makin kecil seiring dengan bertambahnya waktu reaksi. oleh karena itu, plot konsentrasi terhadap waktu berbentuk garis lengkung, seperti gambar di bawah ini. Laju sesaat pada waktu t dapat ditentukan dari kemiringan (gradien) tangen pada saat t tersebut, sebagai berikut.
  1. Lukis garis singgung pada saat t
  2. Lukis segitiga untuk menentukan kemiringan
  3. laju sesaat = kemiringan tangen











molaritas


Dalam ilmu kimia, molaritas (disingkat M) salah satu ukuran konsentrasi larutan. Molaritas suatu larutan menyatakan jumlah mol suatu zat per liter larutan. Misalnya 1.0 liter larutan mengandung 0.5 mol senyawa X, maka larutan ini disebut larutan 0.5 molar (0.5 M). Umumnya konsentrasi larutan berair encer dinyatakan dalam satuan molar. Keuntungan menggunakan satuan molar adalah kemudahan perhitungan dalam stoikiometri, karena konsentrasi dinyatakan dalam jumlah mol (sebanding dengan jumlah partikel yang sebenarnya). Kerugian dari penggunaan satuan ini adalah ketidaktepatan dalam pengukuran volum. Selain itu, volum suatu cairan berubah sesuai temperatur, sehingga molaritas larutan dapat berubah tanpa menambahkan atau mengurangi zat apapun. Selain itu, pada larutan yang tidak begitu encer, volume molar dari zat itu sendiri merupakan fungsi dari konsentrasi, sehingga hubungan molaritas-konsentrasi tidaklah linear.

kalor pembakaran bahan bakar

Reaksi kimia yang umumnya digunakan untuk menghasilkan energi adalah reaksi pembakaran yaitu reaksi yang cepat antara bahan bakar dengan oksigen yang disertai terjadinya api. Bahan bakar utama yang banyak digunakan sekarang adalah bahan bakar fosil, yaitu berupa gas alam, minyak bumi, dan batu bara. Bahan bakar fosil memerlukan waktu ribuan bahkan jutaan tahun untuk terbentuk.

Bahan bakar seperti bensin, solar, minyak tanah, dan LPG merupakan senyawa hidrokarbon. Ciri dari hidrokarbon jika dibakar secara sempurna akan menghasilkan gas karbon dioksida (CO2) dan air. Sebenarnya, gas karbon dioksida tidak berbahaya bagi makhluk hidup akan tetapi jika kadanya teralu berlebihan diudara akan timbul peristiwa yang kita namakan sebagai greenhouse effect atau biasa disebut efek rumah kaca yakni peningkatan suhu di permukaan bumi.

       

Pada pembakaran bahan bakar yang tidak sempurna akan menghasilkan karbon monoksida (CO). Nah gas karbon monoksida inilah yang berbahaya bagi kesehatan manusia, sebab gas CO lebih mudah terikat oleh haemoglobin dibanding dengan gas O2. 

penentuan perubahan entalpi


Penentuan Perubahan Entalpi ( DH )
  1. a. Kalorimetri
  • Adalah cara penentuan kalor reaksi dengan menggunakan kalorimeter.
  • Perubahan entalpi adalah perubahan kalor yang diukur pada tekanan konstan.
  • Untuk menentukan perubahan entalpi dilakukan dengan cara yang sama dengan penentuan perubahan kalor yang dilakukan pada tekanan konstan.
  • Perubahan kalor pada suatu reaksi dapat diukur melalui pengukuran perubahan suhu yang terjadi pada reaksi tersebut.
  • Pengukuran perubahan kalor dapat dilakukan dengan alat yang disebut kalorimeter.
  • Kalorimeter adalah suatu sistem terisolasi ( tidak ada perpindahan materi maupun energi dengan lingkungan di luar kalorimeter ).
  • Rumus yang digunakan adalah :
q = m x c x DT
qkalorimeter = C x DT
dengan :
q = jumlah kalor ( J )
m = massa zat ( g )
DT = perubahan suhu ( oC atau K )
c = kalor jenis ( J / g.oC ) atau ( J / g. K )
C = kapasitas kalor ( J / oC ) atau ( J / K )
  • Oleh karena tidak ada kalor yang terbuang ke lingkungan, maka kalor reaksi = kalor yang diserap / dibebaskan oleh larutan dan kalorimeter, tetapi tandanya berbeda.
qreaksi = – (qlarutan + qkalorimeter )
  1. a. Hukum Hess
  • Pengukuran perubahan entalpi suatu reaksi kadangkala tidak dapat ditentukan langsung dengan kalorimeter, misalnya penentuan perubahan entalpi pembentukan standar ( DHf o )CO.
Reaksinya :
  • Reaksi pembakaran karbon tidak mungkin hanya menghasilkan gas CO saja tanpa disertai terbentuknya gas CO2. Jadi, bila dilakukan pengukuran perubahan entalpi dari reaksi tersebut; yang terukur tidak hanya reaksi pembentukan gas CO saja tetapi juga perubahan entalpi dari reaksi pembentukan gas CO2.
  • Untuk mengatasi hal tersebut, Henry Hess melakukan serangkaian percobaan dan menyimpulkan bahwa perubahan entalpi suatu reaksi merupakan fungsi keadaan.
  • Artinya : “ perubahan entalpi suatu reaksi hanya tergantung pada keadaan awal ( zat-zat pereaksi ) dan keadaan akhir ( zat-zat hasil reaksi ) dari suatu reaksi dan tidak tergantung pada jalannya reaksi. “ Pernyataan ini disebut Hukum Hess.

perubahan entalpi standar

Perubahan entalpi untuk reaksi kimia yang semua pereaksi dan produknya dalam keadaan standar pada suhu tertentu disebut entalpi standar reaksi. Entalpi standar digunakan untuk membandingkan perubahan energi yang berbeda-beda. Ada beberapa jenis perubahan entalpi standar, yaitu perubahan entalpi pembentukan standar (Hof), perubahan entalpi penguraian standar (Hoc) dan perubahan entalpi pembakaran standar (Hod).
  • Perubahan entalpi pembentukan standar (Hof) adalah perubahan entalpi pada pembentukan 1 mol zat dari unsur-unsurnya pada keadaan standar dan semua unsur-unsurnya dalam bentuk standar.
C (s, grafit) + 2 H2 (g) → CH4 (g)      ∆Ho = -74.8 kJ/mol
  • Perubahan entalpi penguraian standar (Hd) adalah perubahan entalpi pada penguraian 1 mol zat menjadi unsur-unsurnya pada keadaan standar.
H2O (l) → H2 (g) + ½ O2 (g)             ΔHo = + 286 kJ/mol
  • Perubahan entalpi pembakaran standar (Hoc) adalah perubahan entalpi pada pembakaran 1 mol zat pada keadaan standar.
C (s, grafit) + O2 (g) → CO2 (g)      ∆Ho = -393.5 kJ/mol

persamaan termokimia


Persamaan reaksi yang mengikutsertakan perubahan entalpinya disebut persamaan termokimia. Nilai ΔH yang dituliskan pada persamaan termokimia disesuaikan dengan stokiometri reaksi. Artinya jumlah mol zat yang terlibat dalam reaksi sama dengan koefisien reaksinya.
Oleh karena entalpi reaksi juga bergantung pada wujud zat harus dinyatakan, yaitu dengan membubuhkan indeks s untuk zat padat , l untuk zat cair, dan g untuk zat gas. Perhatikan contoh berikut .           Contoh: Pada pembentukan 1a mol air dari gas hidrogen dengan gas oksigen dibebaskan 286 kJ. Kata “dibebaskan” menyatakan bahwa reaksi tergolong eksoterm. Oleh karena itu ?H = -286 kJ Untuk setiap mol air yang terbentuk. Persamaan termokimianya adalah:
H2 (g)  + 1/2 O2 (g) ——> H2O (l)                  ΔH = -286 kJ
Atau
2 H2 (g)  + O2 (g) ——> 2 H2O (l)                 ΔH = -572 kJ
(karena koefisien reaksi dikali dua, maka harga ΔH  juga harus dikali dua).

entalpi


Entalpi adalah istilah dalam termodinamika yang menyatakan jumlah energi internal dari suatu sistem termodinamika ditambah energi yang digunakan untuk melakukan kerja. Entalpi tidak bisa diukur, yang bisa dihitung adalah nilai perubahannya. Secara matematis, perubahan entalpi dapat dirumuskan sebagai berikut:
ΔH = ΔU + PΔV
di mana:
  • H = entalpi sistem (joule)
  • U = energi internal (joule)
  • P = tekanan dari sistem (Pa)
  • V = volume sistem (m^3)

ikatan kimia


katan-ikatan berikut adalah ikatan intramolekul yang mengikat atom-atom bersama menjadi molekul. Dalam pandangan yang sederhana dan terlokalisasikan, jumlah elektron yang berpartisipasi dalam suatu ikatan biasanya merupakan perkalian dari dua, empat, atau enam. Jumlah yang berangka genap umumnya dijumpai karena elektron akan memiliki keadaan energi yang lebih rendah jika berpasangan. Teori-teori ikatan yang lebih canggih menunjukkan bahwa kekuatan ikatan tidaklah selalu berupa angka bulat dan tergantung pada distribusi elektron pada setiap atom yang terlibat dalam sebuah ikatan. Sebagai contohnya, karbon-karbon dalam senyawa benzena dihubungkan satu sama lain oleh ikatan 1.5 dan dua atom dalam nitrogen monoksida NO dihubungkan oleh ikatan 2,5. Keberadaan ikatan rangkap empat juga diketahui dengan baik. Jenis-jenis ikatan kuat bergantung pada perbedaan elektronegativitas dan distribusi orbital elektron yang tertarik pada suatu atom yang terlibat dalam ikatan. Semakin besar perbedaan elektronegativitasnya, semakin besar elektron-elektron tersebut tertarik pada atom yang berikat dan semakin bersifat ion pula ikatan tersebut. Semakin kecil perbedaan elektronegativitasnya, semakin bersifat kovalen ikatan tersebut.
  1. REDIRECT Nama halaman tujuan

Ikatan kovalenArtikel utama untuk bagian ini adalah: Ikatan kovalen

Ikatan kovalen adalah ikatan yang umumnya sering dijumpai, yaitu ikatan yang perbedaan elektronegativitas (negatif dan positif) di antara atom-atom yang berikat sangatlah kecil atau hampir tidak ada. Ikatan-ikatan yang terdapat pada kebanyakan senyawa organik dapat dikatakan sebagai ikatan kovalen. Lihat pula ikatan sigma dan ikatan pi untuk penjelasan LCAO terhadap jenis ikatan ini.

Ikatan polar kovalen

Ikatan polar kovalen merupakan ikatan yang sifat-sifatnya berada di antara ikatan kovalen dan ikatan ion.

Ikatan ion

Ikatan ion merupakan sejenis interaksi elektrostatik antara dua atom yang memiliki perbedaan elektronegativitas yang besar. Tidaklah terdapat nilai-nilai yang pasti yang membedakan ikatan ion dan ikatan kovalen, namun perbedaan elektronegativitas yang lebih besar dari 2,0 bisanya disebut ikatan ion, sedangkan perbedaan yang lebih kecil dari 1,5 biasanya disebut ikatan kovalen.[3] Ikatan ion menghasilkan ion-ion positif dan negatif yang berpisah. Muatan-muatan ion ini umumnya berkisar antara -3 e sampai dengan +3e.

Ikatan kovalen koordinat

Ikatan kovalen koordinat, kadangkala disebut sebagai ikatan datif, adalah sejenis ikatan kovalen yang keseluruhan elektron-elektron ikatannya hanya berasal dari salah satu atom, penderma pasangan elektron, ataupun basa Lewis. Konsep ini mulai ditinggalkan oleh para kimiawan seiring dengan berkembangnya teori orbital molekul. Contoh ikatan kovalen koordinat terjadi pada nitron dan ammonia borana. Susunan ikatan ini berbeda dengan ikatan ion pada perbedaan elektronegativitasnya yang kecil, sehingga menghasilkan ikatan yang kovalen. Ikatan ini biasanya ditandai dengan tanda panah. Ujung panah ini menunjuk pada akseptor elektron atau asam Lewis dan ekor panah menunjuk pada penderma elektron atau basa Lewis